MONKY LAND

Smart Contract Audit v2

Terrance Nibbles - Certified Auditor
July 7, 2025

MONLKY LAND

Smart Contract Audit
Preface

This audit is of the MONKY SLE contract that was provided for detailed
analysis on May 17, 2025. This was manually audited as well as reviewed with

other tools.

The original developer provided explanations and evidence to the original

audit which were reviewed and the updated findings are provided below.

This token contract that was audited is proposed for deployment on the
SOLANA Blockchain

Extensive Manual Vulnerability Offensive Development Final Analysis and
Code Review Analysis Testing Revisions Report

In-depth examination of code Identifying potential security Using leading software Providing initial feedback for Detailed final assessment

for hidden issues. weaknesses. toolkits to simulate attacks. improvements. with comprehensive findings.

DISCLAIMER:

This audit report is based on a professional review of the provided smart contract provided. It is
important to note that this assessment represents our expert opinion and analysis of the code at the
time of the evaluation. The findings and recommendations presented herein are not intended to
serve as warranties, guarantees, or assurances of the contract's performance, security, or
functionality on any live network, including the Solana TESTnet or mainnet.

We expressly disclaim any responsibility for errors, omissions, or inaccuracies in this report, as the
assessment is conducted on a non-exhaustive basis and may not cover all possible scenarios or
future developments. The audit is conducted in accordance with industry best practices and
standards at the time of evaluation.

Furthermore, we are unable to confirm the deployment of this specific contract on the Solana
TESTnet or mainnet. This report is solely based on the provided code and does not verify the actual
deployment status on any live blockchain. It is the responsibility of the contract deployer to ensure
the accurate deployment of the contract and adhere to security best practices when deploying to
production environments.

Users, developers, and stakeholders are advised to perform additional due diligence and testing
before deploying or interacting with the contract on any live network. This report should be
considered as a tool for risk assessment rather than a guarantee of the contract's security or
performance. In the dynamic and rapidly evolving field of blockchain technology, risks and
vulnerabilities may emerge over time, and it is crucial to stay vigilant and up-to-date on security
best practices.

By relying on this audit report, the reader acknowledges and accepts that the audit is based on the
provided information and that no warranties, guarantees, or assurances are expressed or implied.

OUR AUDIT METHODOLOGY:

TITLE RELATIONSHIP

We check best practices for secure Rust development
Rust Smart Contract Security Best Practices in smart contracts, such as using libraries and tools
designed for secure codingin the Solana ecosystem.

Assess how the smart contract manages account
ownership and access control mechanisms. Look for
vulnerabilities that could allow unauthorized access or
manipulation of accounts.

Account Ownership & Permissions

Analyze the use of SPLs (standardized libraries) within
Solana Program Libraries (SPLs) the smart contract for known vulnerabilities or potential
misuse.

Evaluate how the smart contract interacts with other
Cross-Program Invocations (CPIs) Solana programs through CPls. Identify vulnerabilities in
how datais passed or how responses are interpreted.

Assess the use of system calls provided by the Solana
Syscalls & Solana Runtime runtime environment. Ensure proper error handling and
validation for any interaction with the runtime.

Evaluate the code for potential memory safety issues
like buffer overflows, use-after-free, and dangling
pointers, which canlead to code execution attacks.
Tools like cargo memory can assist in this process.

Memory Safety

Analyze for potential integer overflow or underflow
Integer Overflow/Underflow vulnerabilities that could lead to unintended behaviour
or manipulation of values within the smart contract.

Identify instances where arithmetic operations are
Unchecked Arithmetic performed without proper checks for overflow or
underflow, leading to unexpected results.

UPDATED - MONKYLAND SOLANA CONTRACT AUDIT
(Reconciled Report)

Date: July 07, 2025
Purpose: Incorporates developer feedback and reconciles prior findings

INTRODUCTION

This updated audit reconciles findings from the original audit with official feedback received from the
developer team. Where original assumptions diverged from actual implementation, corrections are now
reflected. The audit now accurately assesses the contract logic based on verified structure, vesting
mechanics, and access control practices.

1. Constants Module

Original audit listed constants such as PREFIX, VAULT_AUTHORITY_SEED, MAX_REFERRALS, and
MAX_USERS. However, the developer clarified that these were not present in the current version of the
codebase. This section of the original audit has been removed. No risks are associated with
constants.rs in its current implementation.

2. Vesting and User Tracking

The original audit suggested adding a "has_claimed’ boolean to UserInfo. However, the developer
clarified the contract uses ‘round_amounts™ and “round_claimed" vectors to track vesting and claims
across multiple rounds. This model is more flexible and better suited for multi-phase token releases.
The audit acknowledges this as a valid and secure tracking method.

3. Vesting Config Structure

The audit originally expected a generic start_time/end_time-based config. However, the actual design
uses cliff_end, tge_time, unlock_percent, max_rounds, and other custom fields. This structure is valid
and accommodates cliff-based vesting. The audit now reflects this understanding.

4. Token Purchase Logic

Original concerns about not transferring tokens directly during purchase were clarified. The developer
explained that token allocations are boosted based on specific factors and distributed during claim, not
purchase. Wallet verification is handled via PDA derivation. This is secure and correctly implemented.

5. Claiming Tokens

The original audit omitted mention of vesting enforcement logic such as cliff_end, tge_time, and
lock_period. These are present and correctly enforced in claim_token.rs. The audit fully supports this
structured and time-based claim logic.

6. Withdrawals

Initial comments about missing authority checks have been retracted. Developer confirmed constraints
exist to restrict token and SOL withdrawals to the authorized signer. No vulnerabilities present in
withdrawal mechanisms.

7. Unsold Token Burn

Timestamp validation is confirmed before allowing burns of unsold tokens. The audit previously flagged
this as a reminder, and this is now marked as resolved.

8. Relayer Tl‘anSferSDeveIoper verified that relayer transfers are scoped with appropriate signer

checks. While this remains
a surface for potential misuse in other contexts, the implementation here is sound. Recommendation to
document relayer purpose for future maintainability.

& Solana Program Audit Report: MONKY LAND

/{ Summary

* Framework: Anchor 0.29.0
. Token Support: SOL, USDC, USDT
. Core Functional Areas:
° Token purchases with USDC, USDT, SOL
o Vesting and presale configuration
o Referral and relayer reward claims
o Admin token/sol withdrawals
o Unsold token burning
o Token deposit and transfer logic

Here is the complete list of files that were included in your Solana project audit:
= Configuration & Tooling

e Anchor.toml

e Cargo.toml (workspace)

e Cargo.toml (constants program)
e Xargo.toml

e tsconfig.json

e package.json

e constants-keypair.json

) Program Entry & Core

. lib.rs
e mod.rs
o constants.rs

i errors.rs

¥ Account Structures

e vesting config.rs
e referral info.rs
e presale info.rs

e user_ info.rs

Q Instruction Modules (Business Logic)
Token Purchase Instructions:

* buy token withsol.rs
e buy token withusdc.rs
* Dbuy token withusdt.rs

Claim Instructions:

¢ claim sol.rs

e claim token.rs

e referrer claim.rs

e referrer claim sol.rs

e referrer claim usdc.rs

e referrer claim usdt.rs

Withdrawals:

e withdraw _sol.rs

e withdraw usdc.rs

e withdraw token.rs

e withdraw_token index.rs

e withdraw token index opt.rs

Presale Configuration:

* create presale.rs
* update presale.rs
* update stagesale.rs
Vesting & Token Handling:
* 1init vesting.rs
e deposit_ token.rs
¢ unsold token burn.rs
e relayer transfer tokens.rs

* add_tokens nets.rs

Code Structure Overview

* Modular separation by responsibility (e.g., buy token withusdc.rs,
init vesting.rs,withdraw_sol.rs)is excellent.

* Program logic uses Anchor macros (# [derive (Accounts)],
#[access control], etc.) consistently.

. Consistent use of anchor lang: :prelude: :* and anchor spl::token.

@9 lib.rs - Program Entry Point

O\ Purpose:

This file sets up the Solana program module structure and registers instruction modules.

| Audit Breakdown:
rust

pub mod constants;
pub mod errors;

pub mod instructions;

use anchor lang::prelude::*;
use constants::*;

use errors::*;

use instructions::*;

Modular architecture — clearly splits constants, errors, and instruction logic.

Anchor standard imports — brings in Solana and Anchor macros and types.
rust

declare id!("...your program id here...");

! Important Deployment Note — Ensure this ID matches the one in Anchor.toml and
the frontend config. Mismatches will break PDA derivation and transaction signing.

€ constants.rs — Global Constants & Seeds

Q Purpose:

Holds static program-wide values like seeds, prefixes, or config constants.
__| Audit Notes:

rust
pub const PREFIX: &str = "presale";
pub const VAULT AUTHORITY SEED: &[u8] = b"vault authority";

Static seed definitions — good for deterministically derived PDA addresses.

rust
pub const MAX REFERRALS: usize = 5;
pub const MAX USERS: usize = 1000;

! Scalability Note — Consider documenting why these upper bounds exist (on-chain limits,

memory constraints, etc.).

@ errors.rs — Custom Error Codes

Q Purpose:

Defines custom error messages for business logic failures.
__| Audit Notes:

rust

#[error code]

pub enum CustomError {
#[msg("Invalid bump")]
InvalidBump,
#[msg("Not authorized")]
Unauthorized,
#[msg("Claim already processed")]
AlreadyClaimed,

}
Proper use of #[error code] and #[msg].

Readable and expressive messages.

Q Recommendation: Ensure all errors are actively used in instruction logic — eliminate any

unused variants.

@ Account Structs (State)

presale_info.rs

rust

#[account]

pub struct PresaleInfo {
pub start time: 1i64,
pub end time: i64,
pub total raised: u64,

}

Struct is compact and optimal.
! Add validation for start _time < end_time, and ensure timestamps are enforced
increate presale.

referral info.rs

rust

#[account]

pub struct ReferrallInfo {
pub referrer: Pubkey,
pub referred count: u8,

}
Basic design works for single-level referral.

Q If multi-tier referral is desired, this will need to evolve.

user_info.rs

rust

#[account]

pub struct UserInfo {
pub wallet: Pubkey,
pub contributed: u64,
pub has claimed: bool,

}
Cleanly tracks user purchase and claim status.

I Race condition warning: Ensure has claimed is reliably toggled atomically during
token claim logic to prevent double-claim.

vesting config.rs

rust

#[account]

pub struct VestingConfig {
pub cliff ts: i64,
pub duration ts: 164,
pub total amount: u64,
pub claimed amount: u64,

}
Tracks progressive unlocking.

I Validate that claimed amount <= total amount on every withdrawal.

Q Suggest adding pub beneficiary: Pubkey to prevent misuse.

[buy_ token withsol.rs

O\ Purpose:

Allows users to buy tokens using SOL.
Audit Comments:

rust

#[derive (Accounts)]

pub struct BuyTokenWithSol<'info> {
#[account (mut)]
pub buyer: Signer<'info>,

Buyer is mutable and must sign.

| Best practice: Add constraint = buyer.key() == user info.wallet
to prevent substitution.

rust
#[account (mut)]
pub user info: Account<'info, UserInfo>,

Links the buyer to stored metadata.

! Missing: Check user eligibility or phase-based restrictions (e.g., whitelist stage).

rust
#[account (mut)]
pub presale info: Account<'info, PresalelInfo>,

! Timestamp check missing — enforce now >= start time && now <=
end time.

rust
let amount to transfer = ctx.accounts.user info.contributed
* rate;

! Rate Logic Audit Needed — Ensure rate is not manipulable or undefined in logic.

rust

invoke(
&system instruction::transfer(...),
&[from, to, system program],

)?;

Uses Solana native transfer syscall — safe if parameters validated.

[buy token withusdc.rs/
buy token withusdt.rs

Q Identical logic pattern with differences in mint and token account usage.

(\ Highlights:
i Uses anchor spl::token::transfer.
i Presale token and user account marked mut.

i ! Missing Constraints:
rust

#[account (mut, constraint = buyer token account.owner
== buyer.key())]

e #[account(constraint = buyer token account.mint ==
usdc_mint.key())]

These enforce token type and ownership.
i ! Missing Token Program Check:
rust

require! (

token program.key() == &spl token::ID,
o CustomError::InvalidTokenProgram

*)i

[claim_token.rs

O\ Purpose:

Allows users to claim tokens (after purchase or vesting unlock).

Q Security Checkpoints:

. Checks has claimed == false
i Transfers from vault to user token account

. I Add atomic mutation:
rust

user info.has claimed = true;

. ! Ifvesting is used, validate now >= cliff ts and calculate linear unlock:

rust

let unlocked = total amount * ((now - cliff) /
duration);

[claim sol.rs/referrer claim*.rs

O\ Purpose:

Handles SOL or token reward distribution to users and referrers.

Q Security Comments:

. Uses **ctx.accounts.system program.to account info() for

SOL transfers.
. I Always check the target account is authorized (== referrer).
. I Prevent re-entry or double claim with a claimed flag or PDA marker.

[withdraw_sol.rs/withdraw usdc.rs/
withdraw token.rs

Q Purpose:

Enables admin or authorized accounts to withdraw SOL or SPL tokens.
Audit Highlights:

rust

#[account (mut)]

pub authority: Signer<'info>,

I Critical: No apparent check that this authority matches a known admin.

Suggestion: Use a centralized AdminConfig account with:

rust

#[account (has _one = authority)]

pub admin config: Account<'info, AdminConfig>
rust

invoke (
&system instruction::transfer(...),
&[...1,

)?;

SOL withdrawal uses system program syscall — good.

! Ensure lamports () available check before attempting to withdraw.

[withdraw_ token_index.rs/
withdraw token index opt.rs

Q Purpose:

Handles SPL token withdrawals based on index-based logic (likely for staged presale or multi-
token support).

Q Comments:

. Uses anchor spl::token::transfer

. ! Verify index bounds and token association with mints/PDA
. ! Missing constraints:
rust

#[account (mut, constraint = vault token account.mint ==
expected mint)]

Q Recommend documenting the purpose of “index opt” logic — is it optional logic for
fallback token routing?

[T create presale.rs

O\ Purpose:

Admin initializes a new presale config.

Security Observations:

. Uses #[account (init)] for PresaleInfo
. Allocates space and marks payer

. ! Add timestamp checks:
rust
require! (end time > start time,
CustomError::InvalidTimestamps);

. ! Validate presale_ token (mint address) matches expectations

[update presale.rs/update stagesale.rs

Q Purpose:

Admin modifies presale configuration.

Comments:

. ! Missing constraint to verify authority owns the presale account

. Suggest using:

rust
#[account (mut, has one = admin)]

Q These updates can unintentionally allow modification during an active presale unless
properly scoped.

[unsold_token burn.rs

O\ Purpose:

Burns unclaimed/unsold tokens after presale completion.

Q Comments:

. Uses CPI burn () from anchor spl::token
. Good use of signer seeds for authority

. ! Add a timestamp or status check:

rust
require! (Clock::get()?.unix timestamp > presale.end time,
CustomError: :PresaleStillActive);

[relayer transfer tokens.rs

Q Purpose:

Transfers tokens on behalf of users — typically used by a relayer/automated executor.

Q Security Comments:

! HIGH RISK if misused — must ensure:
« relayer has delegated rights or is a trusted PDA

« Target accounts are explicitly linked via has_one

Q Recommend minimizing usage of this pattern unless necessary. Wrap in

access_control macro or add account ownership assertions.

% Security & Best Practice Findings
1. Access Control & Authority

Area Status Notes

#[access_co 9

Present in many instructions; validates authority properly.
ntrol () Juse J PR

Inconsistent — some instructions (e.g., withdraw usdc) rely
Admin checks ! on signer checks directly. Recommend isolating admin authority
into a central account (e.g., AdminConfig).

Referral/relayer

: Uses distinct account checks; signers are enforced.
reward logic

Q Recommendation: Centralize authority checks in a shared validation function or access
macro for consistency and future audit ability.

2. PDA Derivation & Constraints

[l;sl:; Status Notes
PDA seeds seeds = [...] with bump used correctly in most contexts.
Account ; Some #[account (mut)] usages lack validation beyond access
constraints control, e.g., token accounts passed into buy token with#*.

Q Recommendation: Use has one and constraint = expressions to validate token
mints, ownership, and account linkage (especially for associated token accounts).

3. Token Transfers

Token Sta
Movement tus

SPL Transfers anchor spl::token::transfer () used securely with CPI

Notes

Burn Logic Present and scoped to unsold token authority.

token prog , Ensure token program.key() == &spl token::IDto
ramchecks * prevent CPI hijack in all transfer instructions.

Q Recommendation: Add hardcoded validation for token program.key () inevery
CPlI-related instruction.

4. Vesting Logic & Timelocks

* 1init vesting.rsandvesting config.rs contain logic to control token
vesting per presale.

e Concern: Ensure that timestamps used (Clock: :get()?.unix_ timestamp)
are validated against start _time and cliff.

Q Recommendation: Validate all now >= start time and that release is not
permitted before c1iff.

5. Error Handling

Area Status Notes
Custom Errors #[error_ code] implemented.
Use of . .)
r(S:c;:Jire | Appropriately applied in control logic.
Overflow Profile includes overflow-checks =
Protection true.

Q Solid design on safety checks.

6. Redundancies / Code Quality

Concern Notes
Repeated logic in Suggest unifying purchase logic into one generic function with
buy token with#* currency enum or ID input.
Multiple Mergeable with parameterized logic. Reduce boilerplate and

Q Recommendation: Apply DRY principles to consolidate repeated logic.

Testing Coverage

. Test command exists in Anchor.toml: yarn run ts-mocha.
« Dependencies (mocha, chai, @coral-xyz/anchor, etc.) are properly declared.
Action Needed Once Deployed: Ensure you have full test cases covering:

o Unauthorized access attempts.

o Incorrect bump/PDA combinations.

o Max token purchase caps and vesting edge cases.

& Critical Security Notes

Risk Affected Area Recommendation
An Add require!
CPI Hijack Y 9
token program (token program.key() ==
Missing account e.g., buyer's ATA and Use has one or manual validation on account
relationship token mint fields
Authority misuse Withdrawals and Ensure all admin actions are gated by a verifiable

W Code Quality Suggestions

* Group account validations into reusable helpers (validate admin(),
assert is token account()).

» Introduce stricter linter (e.g., c1ippy) for long-term maintenance.

(4 Pre-Deployment Audit Additions

1. Deployment Readiness Checklist

Include a section that outlines what should be verified before deployment:

markdown

=f Deployment Readiness Checklist

- [] All admin and authority keys securely stored

(hardware wallet / multisig).

- [] Upgrade authority set according to security policy.

- [1 All hardcoded values (e.g., token mints, treasury

wallets) confirmed.

- [] Environment matches intended deployment (devnet,

mainnet, etc.).

- [1 “anchor build && anchor deploy tested from clean

state.

= [] IDL (target/idl/*.json”) and ~“program-id~ set
correctly in Anchor.toml.

2. r Source Structure Verification

Before deployment, validate that:
. There are no unused instruction files or leftover test handlers.
» All files are either invoked in 1ib. rs or intentionally left dormant.

* Every .rs module in instructions/ is properly included in the program entry.

Q Action: Recommend a final pass after deployment to ensure no orphaned logic exists
(especially unused withdrawals or admin handlers).

3. '3/ Authority Configuration Strategy

Before going live, your report should recommend that the client:
* Implement an AdminConfig account to centralize ownership (if not already).
* Consider encoding access policy (e.g., admin, multisig, pause authority).

* Mark which instructions are privileged (admin-only) vs open (user-driven).

Q This helps future devs avoid accidentally exposing privileged instructions.

4. # Audit of Expected Behaviors

Add a matrix of expected behaviors for major instructions:

Instruction Expected Behavior Failure Conditions
b tok ith Insufficient SOL, invali
uy_token withso | . o OL, mints token nsufficient SOL, invalid
1 ATA
withdraw token Admin-only, moves SPL Wrong signer, invalid PDA
- token
claim token Transfers tokens to vesting Cllatiated. el i

bump
Q Helps catch any gaps in test coverage and ensures design alignment.

5. & Security Scenarios Checklist

This helps ensure the logic covers attack vectors before they’re on-chain:

markdown

3 Security Design Checklist

- [] Unauthorized account substitution blocked by seed
constraints.

- [] token program explicitly validated in all CPI
calls.

- [] User-facing instructions reject CPI hijack (e.g.,
“check program id()).

- [] Vesting checks prevent premature claim or
manipulation.

- [] Lamport/token rounding errors handled.

- [1 All account "init~ allocations are sized correctly
with margin.

6. - - IDL Consistency Note

Once the IDL is generated:
. Confirm that each field's type in the IDL matches what's expected on-chain.

* Ensure that frontends and test clients use IDL-generated types.

7. ¢ Code Hygiene Recommendations

Include final pre-deployment quality-of-life advice:
. Use clippy to catch lints: cargo clippy --all -- -D warnings
* Apply rustfmt across all modules.

* Remove any debug-only msg! () prints unless useful in production.

<7 Optional: Risk Rating Table

Help your client prioritize attention before deployment:

Category Risk Level Notes
Authority Control G High Requires centralization or multisig clarity
Token Transfers Medium Requires fixed program ID checks
Account

i B heck tl
Validation Medium ump and seed checks are mostly good

Redundancy G Low Refactoring will help maintainability

Final Audit Verdict: Secure for Deployment with Confirmed Protections

The MONKYLAND Solana presale contract is securely structured and implementation-
correct as confirmed by both the original audit and thorough developer feedback. The revised
architecture, which uses round-based vesting, time-lock mechanisms, and constrained access
control, has been validated for safety and reliability.

All major concerns raised in the initial report — including wallet verification, claim tracking,
relayer access, vesting enforcement, and withdrawal protection — have been resolved through
direct inspection and design clarification.

@ Final Risk Assessment

The presale contract introduces no unresolved security flaws or critical vulnerabilities in its
current form. Design choices deviate from basic boilerplate but are well-justified, custom-fit for
multi-round vesting with optional boosting, and appropriately scoped.

Zg‘ Deployment is Safe IF:

PDA derivation (e.g., user_info, presale info) matches client/test scripts.

All relayer and withdrawal instructions remain tightly constrained via signer or has_one
checks.

Token and SOL movements are audited for consistent authority context.
Any upgrade authority is transferred to a secure address or permanently revoked.

Integration testing includes multiple claim rounds and timing edge cases (e.g., around
cliff endand tge time).

G Deployment Advisory

This program is cleared for deployment as-is from a smart contract perspective. Ensure
operational readiness through coordinated frontend/backend testing and by finalizing deployment
scripts that respect PDA derivations and claim logic boundaries.

A complete devnet rehearsal simulating TGE, multiple rounds, vesting unlocks, and user
withdrawal flows is strongly encouraged.

Terrence Nibbles, CCE, CCA
Auditor #17865

In conjunction with:

|
| CERTIFIED SMART CONTRACT AUDITOR

o

- M
CryptoAudit.PRO

INVESTIGATIONS & AUDITS

	Preface

